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Although free oscillations of the Earth may be computed by many different methods, 
numerous practical considerations have led us to use a Rayleigh-Ritz formulation with 
piecewise cubic Hermite spline basis functions. By treating the resulting banded matrix 
equation as a generalized algebraic eigenvalue problem, we are able to achieve great accuracy 
and generality and a high degree of automation at a reasonable cost. 

INTRODUCTION 

Most of what is currently known about the detailed mechanical structure of the 
interior of the Earth has been learned from the study of elastic wave propagation. For 
frequencies of seismic interest (-0.3 mHz to 100 Hz) the source is generally either an 
earthquake or an explosion; the receivers are accelerometers, polarized either 
vertically or in one horizontal direction, placed at the Earth’s surface. 

In this paper we will be concerned with numerical modeling of very low frequency 
(-0.3-25 mHz) seismic energy. In this frequency band it is observationally and 
computationally convenient to consider a standing rather than a traveling wave 
formalism. That is, we will represent the displacement field in the interior of the Earth 
as a sum over the elastic-gravitational free oscillations (normal modes) of the Earth 
(for a review of this topic, see Buland [6]). 

The computational effort involved in free oscillation modeling is completely 
dominated by the calculation of the normal mode eigenfunctions and eigenfrequencies 
themselves. In the following we will devote our attention exclusively to a 
Rayleigh-Ritz algorithm we have developed for solving this problem. Some of this 
work has been briefly described by Buland and Gilbert [4]. 
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96 BULAND AND GILBERT 

MATHEMATICAL FORMULATION 

Consider an Earth model which is spherically symmetric, self-gravitating, 
transversely isotropic, and slightly anelastic. If one computes all j elastic- 
gravitational free oscillations of this model having eigenfrequencies less than some 
cutoff angular frequency WC, then one may write (frequency) band limited, 
infinitesimal displacements in the interior of the model as 

s(r, 6, $, t) = i e,S,(r, @,9> eciwkp rk)f, 
k=l 

where s is displacement; r, 6, and 9 are radius, co-latitude, and longitude respectively 
(i.e., the usual spherical coordinates), and t is time. ek is the excitation, Sk the eigen- 
function displacement, ok the angular eigenfrequency, and CITY the damping parameter 
of the kth free oscillation. Note that Eq. (1) is incomplete in fluid portions of the 
model as we have neglected the gravitational-elastic normal modes describing fluid 
flow. As all sources and receivers of seismological interest are located in solid regions 
of the Earth’s interior, this need not concern us here. 

From Rayleigh’s principle, the normal modes we seek are extremal solutions of the 
energy balance equation 

w2 
J 
-=A(r) r2 dr -j&B(r) r2 dr = 0, 
0 0 

(2) 

where w2A is kinetic energy density, B is potential energy density, and a is the radius 
of the Earth model. Following Backus [ 11, we decompose the eigenfunction 
displacement into vector spherical harmonics 

.Sr(r, 6,9) = r^ nU,(r) Yr(6,9) + nVl(r> V, YY(@, 9) - nW,(r) i X VI Y;t(til 9)~ (3) 

where the mode index k has been replaced by the three indices n (radial order), 1 
(angular order), and m (azimuthal order). U, P’, and W are amplitude scalars for 
displacement in three locally orthogonal directions. The Yr’s are fully normalized 
surface harmonics. V, is the tangential gradient operator 

V,=9:a,+~cscsa,, (4) 

where 3, means the partial derivative with respect to x and P, 8, and 4 are unit 
vectors in the r, 6, and 9 directions, respectively. Because the Earth model is self- 
gravitating it will be necessary to consider the perturbation to the gravitational 
potential due to displacement $7 

nP;“(r, %9) = t R,(r) YXR 9). (5) 



COMPUTATION OF FREE OSCILLATIONS 97 

The potential perturbation will have the same time dependence as the corresponding 
displacement. 

Due to the spherical symmetry of the model, the problem thus reduces to one of 
determining scalers U, V, W, and P which are functions of radius alone and constants 
o and 0~. Following Pekeris and Jarosch [ 141, but using the notation of Backus and 
Gilbert [2] and Backus [I], Eq. (2) may be rewritten as 

go’ la&U2 + V2 + W’) r2 dr - la { [ (21’ + 5’ - 2pgr + 2p2r2) U2 
0 0 

+ 2lrULj+ #r2ti2 -pr2UP + {(ii - 2~‘) V* -,urVp+ $w2+2 + f@ - 2,u’) W2 

- pr WfP + $ur2W2 + QP* + +rPP + Qr’l”‘] 

+L[@gr-21’-2,u’-p)UV+prUG-I&k-prVP] 

+ L~[+~UU~ + #,’ + 5’) V2 + $’ W2 + iP2] + I[$P’ + $rPp]} dr = 0, (6) 

where p(r) is density; I(r), n’(r), p(r), p’(r), and /I( r are transversely isotropic Lame ) 
parameters; g(r) is the acceleration due to gravity; L* = I(I + 1); and i means the 
derivative of x with respect to radius. The normal modes we seek are extremal 
solutions to Eq. (6) subject to the boundary conditions that radial displacement, U, is 
continuous everywhere but the surface and potential perturbation, P, is continuous 
everywhere while tangential displacements V and W are continuous everywhere 
except at solid-fluid interfaces. Also tractions R, S, and T and potential “traction” Q 
must be continuous everywhere, where 

P,(r)=N+S(ZU-LV), 

.S,(r)=yP+F (LU- V), 

.T,(r)=pf@--‘f W, 

.Q,(r) = p + F P + 4pU. 

Note that Eqs. (6) and (7) have been non-dimensionalized such that K times the 
universal gravitational constant, G, is unity. The anelasticity of the Earth model will 
be incorporated approximately by assuming that the Lame parameters are complex. 
Because the anelasticity is small, it will be a good approximation to treat only the 
real part of Eqs. (6) and (7) directly. The imaginary part can be adequately treated 
after-the-fact by means of first-order perturbation theory (e.g., Dziewonski and 
Anderson [8]). Considering anelasticity, then, only complicates Eqs. (6) and (7) to 
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the extent that the Lame parameters will be slightly frequency dependent (e.g., 
Jeffreys [ 111). To first order, the frequency dependence may be written 

y(r, 0) = h(r) + In(w) h(r), (8) 

where y is any of I, A’, ,u, ,u’, or p (Kanamori and Anderson [ 121). 
Because W does not occur in cross terms with U, V, or P in Eq. (6), further 

simplification is possible. As with most elastic problems there will be solutions where 
only W is non-zero and solutions where only W is identically zero. The first type of 
solution is termed a toroidal mode and is denoted ,,T;“. The second type of solution is 
termed a spheroidal mode and is denoted ,,Sy. Fluid regions will not support toroidal 
motion. However, spheroidal motion will be present throughout the interior of the 
Earth model. 

For each mode type and each angular order I = 0, 1,2,..., Eqs. (6) and (7) have 
infinitely many solutions. The lowest frequency of these is dubbed the fundamental 
(or gravest) mode of the series and assigned radial order zero. The higher frequency 
modes (overtones) are assigned successively higher, integral radial order numbers in 
order of increasing frequency. Because Eqs. (6) and (7) are independent of azimuthal 
order, each solution will be 21+ l-fold degenerate (i.e., m = -I, -I + l,..., +I will be 
degenerate in frequency). 

PHYSICAL PROPERTIES 

In order to properly model the elastic response of the Earth, it is necessary to 
consider constraints imposed by the physical behavior of the system. In this spirit, we 
will briefly review the types of normal modes we expect to find and how they interact 
with one another. 

FIG. 1. Non-dimensional components J., p, and p of Earth model PREM [S] at a reference frequency 
of 1 Hz are plotted as a function of non-dimensional radius. The small anisotropy of this model has been 
averaged away for purposes of illustration. 
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FIG. 2. Eigenfunction displacement for the mantle spheroidal mode ,S,,,. 

Figure 1 shows a typical, spherically averaged Earth model. In this diagram, the 
components of the model (density and the Lame parameters) are plotted as a function 
of radius. Note that non-dimensional amplitude is drawn horizontally and normalized 
radius vertically. The surface of the model is at the top of the diagram, the center at 
the bottom. For purposes of illustration, the model is shown at a reference frequency 
of 1 Hz and the small transverse isotropy has been averaged away 
(A’=1,p’=u,p=A+zp). 

The most important feature of Earth models is that all model parameters generally 
increase with depth. This also turns out to be true of the related parameters 
compressional and shear velocity. As a result, the most interesting and useful subset 
of free oscillations is oscillatory from the Earth’s surface down to a depth related to 
the velocity of the medium and the phase velocity of the normal mode. Below this 
point the mode will be evenescent, decaying toward the Earth’s center. Figures 2-4 

Amplitude 
S.OE-02 ;.~~-qZ i-.j.!.~~. ~ 

o.ol 
FIG. 3. Eigenfunction displacement for the spheroidal mode J,,. This mode penetrates into the 

outer core. 
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Amplitude 

FIG. 4. Eigenfunction displacement for the spheroidal mode 39S,. This mode penetrates into the 
inner core. 

show a suite of such solutions. Each figure is laid out as in Fig. 1, but shows the 
radial scalars U and V for one spheroidal mode. All modes shown are computed 
using model 1066A of Gilbert and Dziewonski [lo]. Amplitude is normalized so that 
kinetic energy equals ICC, . ’ * Phase velocity increases in successive figures and so does 
the depth of penetration into the model. 
-Unfortunately, this is not the only type of solution which must be considered. The 
two solid horizontal lines in the interior of Fig. 1 mark boundaries between physically 
distinct regions of the Earth’s interior. The upper region is the solid mantle, the center 
region the fluid outer core, and the lower region the solid inner core. The presence of 
fluid-solid boundaries in its interior greatly complicates the Earth’s elastic response. 
As a result, we must also consider solutions which are trapped in one region or on 
one of the boundaries. Figures 5 and 6 show modes trapped in the mantle and inner 
core (called core modes), respectively. Figures 7 and 8 show modes (called Stoneley 
modes) trapped on the core-mantle and inner core-outer core interfaces respectively. 

FIG. 5. Eigenfunction displacement for the spheroidal mode J, . This mode is trapped in the mantle. 
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FIG. 6. Eigenfunction &placement for the spheroidal core mode S 29 20’ 

As one might expect, there are also solutions trapped in the fluid outer core. These 
are the fluid flow modes alluded to above, also known as gravitational-elastic modes 
or undertones. The behavior of these modes is sufftciently different from the elastic- 
gravitational modes of interest here that they are generally considered separately 
(e.g., Smith [17]). Therefore, we will not consider them further (although we will find 
that they cannot be entirely forgotten). 

There is one additional complication which must be mentioned. As for any elastic 
solid, the Earth’s mantle and inner core support two kinds of wave motion: 
compressional or longitudinal motion and shear or transverse motion. The fluid outer 
core and ocean support only compressional motion. Toroidal modes represent pure 
shear motion. Therefore, the fluid outer core will not support toroidal motion and 
toroidal mantle and core modes are entirely decoupled. As a result, toroidal core 
modes are generally neglected, a practice we will follow here. There are, then, 
toroidal analogs of Figs. 2, 5, and 6 but not of Figs. 3, 4, 7 and 8. 

Amplitude 

FIG. 7. Eigenfunction displacement for the core-mantle spheroidal Stoneley mode J,,,. 
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FIG. 8. Eigenfunction displacement for the inner core-outer core spheroidal Stoneley mode ,S,,. 

The simplicity of toroidal modes may be seen by examining a dispersion diagram. 
Figure 9 shows a plot of the eigenfrequencies of mantle toroidal modes as a function 
of angular order. The dispersion curves are obtained by connecting the eigenfre- 
quencies of modes with constant radial order. Fig. 9 may be considered to be a 
frequency-wavenumber diagram because angular order is asymptotically proportional 
to horizontal wavenumber as frequency becomes large. The slope of the dispersion 
curves is proportional to group velocity and straight lines passing through the origin 
are lines of constant phase velocity. Dashed line A is the phase velocity needed to 
penetrate to the base of the mantle. Modes to the left of this line are oscillatory 
everywhere in the mantle. Modes to the right of this line are evenescent below some 
depth. 

Spheroidal dispersion might be expected to be considerably more complicated as 
spheroidal modes represent coupled compressional and shear motion. Figure 10 
shows that this is indeed the case. Again we divide the diagram into regions. 
However, because of the coupling, the physical interpretation of these dividing lines is 
no longer simple. It is convienent to use the phase velocities of the Stoneley branches 

FIG. 9. Mantle toroidal mode dispersion diagram. Angular order is asymptotically proportional to 
horizontal wavenumber as w + CO. Dashed line A marks the phase velocity needed for a mode to 
penetrate to the base of the mantle. 
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FIG. 10. Spheroidal mode dispersion diagram. Dashed line A marks the phase velocity of core- 
mantle Stoneley modes. Dashed line B marks the phase velocity of inner core-outer core Stoneley 
modes. 

for this division. Dashed line A marks the phase velocity of the core-mantle Stoneley 
modes (see Fig. 7). Dashed line B marks the phase velocity of the inner core-outer 
core Stoneley modes (see Fig. 8). To the right of A, compressional and shear motion 
are strongly coupled resulting in remarkable similarity to the corresponding region of 
Fig. 9. To the left of A the lines of constant radial order have sharp bends forming a 
stair step pattern. Although they never cross, segments of these lines conspire to form 
trends which are smoothly varying across the diagram. To the left of B one can pick 
out many subparallel instances of three distinct trends, resulting from much weaker 
coupling between compressional and shear motion in this region. The shallowest 
trend represents the dispersion of mantle shear waves, the intermediate trend that of 
whole Earth compressional waves, and the steepest that of inner core shear waves. 

Although the Earth is known to possess structural details at all scale lengths, 
structure other than that discussed above modifies dispersion rather than contributing 
new kinds of solutions at normal mode frequencies. Structure with scale lengths 
smaller than about 50 km in radius and 1000 km tangentially is generally quite 
insignificant at the frequencies of interest here. 

ALGORITHMIC CONSTRAINTS 

As stated above, toroidal core modes and fluid undertones will be neglected. 
However, because of the coupling among various types of spheroidal modes, we have 
resolved to compute all of them, even though many have small expression at the 
Earth’s surface. Second, because of the large number of modes of interest (-6000 
with eigenfrequency less than 25 mHz), a high degree of automation is required. 
Third, because many high phase velocity spheroidal modes with the same angular 
order form doublets or triplets with nearly the same eigenfrequency (see Fig. lo), we 
require a method which properly handles near degeneracy in eigenfrequency. Fourth, 
a high degree of precision in the eigenfrequency is required as observations are 
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achieving accuracies of a few parts per million in some cases (e.g., Buland et al. IS]). 
Finally, the method must be reasonably efficient. 

Most of these criteria ultimately caused us to abandon many years experience with 
a shooting method in favor of a Rayleigh-Ritz approach. Shooting methods generally 
lack the required degree of automation because both the direction of stable 
integration and the appropriate place for matching the boundary conditions are mode 
dependent (e.g., compare Figs. 2 and 7). Second, it is quite possible for a shooting 
method to interpret a triplet as a single solution and to miss a doublet altogether. 
Finally, shooting methods can become very inefficient if one requires high precision 
at high angular order. This is because normal mode amplitude in an evenescent 
region decays as Y’ (I can reach 250 for modes with eigenfrequency less than 
25 mHz), making the system very “stiff.” 

Instead we use a Rayleigh-Ritz formulation and solve the resulting matrix 
equation as an algebraic eigenvalue problem. This provides full automation and 
completely correct handling of nearly degenerate eigenfrequencies. Furthermore, the 
stiffness problem is alleviated by the fact that the observable eigenfrequency is found 
to twice the significance of the non-observable eigenfunction. 

It is worth noting that Woodhouse 1201 has removed two of our objections to 
shooting methods. He achieves full automation by reformulating the problem in terms 
of minors (e.g., Gilbert and Backus [9]). Further, he was able to define an analog of 
the Sturm count computed directly from a trial eigenfunction. This allows proper 
handling of nearly degenerate eigenfrequencies. 

NUMERICAL FORMULATION 

Following Wiggins [ 181, we have chosen to use the basis functions for piecewise 
cubic Hermite interpolation (H-splines) as basis functions for our Rayleigh-Ritz 
problem (Birkhoff, et al. [3]). These are the lowest-order polynomial basis functions 
which allow all boundary conditions to be matched exactly, as required by the 
classical Rayleigh-Ritz method. Furthermore, each H-spline is of limited spatial 
extent (a finite element). This allows sufficient generality to encompass all possible 
types of solution and leads to a computationally efficient, banded matrix problem. 

In order to specify the problem in detail it is useful to consider three radial 
discretations of the Earth model. First, consider interface grid, q. Each element of rl is 
a radius at which one or more components of the model is discontinuous. 

V: O=z,<~,<~~-<z,=a. (9) 

Second, consider model grid, v 

It has proven sufficiently general to think of Earth models as being specified only at 
the M points of v. In keeping with the H-spline basis functions, we interpolate each 
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element of the model over grid v with a piecewise cubic polynomial (B-splines) which 
tits the model parameter exactly at points of v and has continuous first and second 
derivatives everywhere (Carasso and Laurent [7]). In order that the model be 
properly interpolated it is necessary that grid q be a subset of grid v and that the B- 
spline interpolation be broken at each interface. 

Finally, consider H-spline grid rc 

n: 0=x, <x, < -*a <XN=a. (11) 

For each radial function to be represented, say F(r), we need 2N basis functions, two 
centered at each point of grid z That is, 

F(r) z ,f {FiXi(r> + $1 Vdr> 19 
i=l 

(12) 

where Fi and gi are constants and xi, vi, i = 1, 2,..., N are the 2N basis functions. 
Define normalized H-splines 

/ 0, 2x3 - 3x2 + 1, 
x0(x) = -2x3 - 3x2 + 1, 

o<x< otherwise, 1 
-l<x<O 

(13) 

x3-2x*+x, O<x,<l 
lye(x) = x3 + 2x2 +x, -l(x<O 

0, otherwise. 

x0 and wO are shown in Fig. 11 and their properties at grid points are summarized in 
Table I. The basis functions may now be written as 

I 

4x0 (x;y:;i) 9 x > xi 

XiCx) = 

xo (x;:x;:, )T 
X<Xi, 

(14) 

1 si(xi+ 1 -xi)WO ( x~~~xl)v x>xi 

Vitx) = 

(xi-xi-1) WO (x~~x~‘,) 7 X < Xi, 
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Distance 

FIG. 11. The solid line is normalized H-spline x0 and the dashed line is yO. The grid points are at 
x=-1,0,+1. 

where ~3~ and 8, are additional constants which will be preselected to match the 
boundary conditions. Notice, if we select constants Fi, pi, 6i, and 6, such that 

Pi = F(x;), diFi = F(x’), 

Fi = F(x,:), SiPi = P(x,?), 
(15) 

then Eq. (12) is just the H-spline interpolation of F(r). Since boundary conditions can 
only be matched at points of grid rr, it is necessary that grid q be a subset of grid x. 
At interface points, 6, and di will be chosen to match the boundary conditions 
relevant to the scalar being represented. Otherwise, 6, = gi = 1 will ensure the 
continuity of the scalar and its first derivative. 

It is common practice in this sort of problem to make the v and z grids coincide. 
There is, in fact, no necessity and little practical advantage in doing so. Therefore, we 
have chosen the conceptually more satisfying course of letting them be distinct. The v 
grid must be chosen so that the B-spline interpolation of the model is sufficiently 
accurate. That is, the grid spacing must be dense where the model parameters vary 
rapidly and may be sparse where the model parameters are smooth. In practice, we 
generally use a grid specified by the author of the model, if available, as we then 
make maximum use of all available information. In any case, it is generally 
worthwhile to err on the side of caution as the efficiency of B-spline interpolation is 
only a weak function of grid size 44. 

Selection of the K grid is quite another problem. If N is too small, there will not be 

TABLE I 

Normalized H-Spline Values at Selected Grid Points 

X x0(x) axxdx) v,(x) a, wd4 

-1 0 0 0 0 
0 1 0 0 1 

+1 0 0 0 0 
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enough basis functions to adequately represent the desired eigenfunctions causing a 
loss of precision. If N is too large, the resulting matrix problem will be larger and 
more costly to solve than necessary. It is possible to optimize rr by making the local 
grid spacing h, = xi+ i - xi proportional to the minimum radial wavelength of interest. 
That is, where an eigenfunction is oscillatory it will always have at least I grid points 
(21 degrees of freedom) per wavelength if 

(16) 

where f,,, is the maximum frequency of interest and V,in is the minimum velocity of 
the medium (shear velocity in solids, compressional velocity in fluids). Although 
Eq. (16) is not necessarily justified in evenescent regions of an eigenfunction, it turns 
out to work well in practice as long as Z is sufficiently large. 

Formulation of the matrix problem is now straightforward. After selecting Z and 
f max 3 construct grid rr using Eq. (16). Then expand scalers U, V, W, and P in the 
basis functions (Eq. (14)) as in Eq. (12). Unfortunately the constants ai and di for 
each scalar may depend on angular order and on eigenfrequency for interface grid 
points (see Eq. (7)). If they are specified at this stage, it will be necessary to perform 
the integrals in Eq. (6) for each angular order and trial eigenfrequency. The problem 
is avoided by breaking basis functions which span an interface grid point, say xi, into 
two portions each: xi(r) becomes xj(r < xi) and xj(r > xj), vi(r) becomes vj(r < xi) 
and vj(r > xi). Treating each fractional basis function independently defers the 
specification of the ~5~‘s and dj’s until a more convenient time. 

The same problem clearly affects the integrand of Eq. (6) itself. The I dependence 
is shown explicitly. The frequency dependence of Eq. (6) will be the same as that of 
the Lame parameters (shown in Eq. (8)). 

Therefore, Eq. (2) may be rewritten as 

io* 
I 
=A(r) r* dr- j={B,(r) + LB,(r) + L*B,(r) + ZB,(r) 

0 0 

+ In(o)[GB,(r) + L&?,(r) + L*aB,(r)]} r* dr= 0, (17) 

where A, the Bj’s, and the ~Bj’S are all independent of 1 and w. Notice that A and B, 
are frequency independent as they contain only inertial terms. 

Because a basis function associated with grid point xj interacts only with itself and 
its nearest neighbors (basis functions associated with grid points xj-i, xi, and xi+ ,), 
it is convenient to perform the integrals in Eq. (17) over the subintervals [xj, xi+ ,I, 
j = 1, 2,..., N - 1. On each subinterval the integral is computed by a 6-point Gauss- 
Legendre quadrature. This method is very fast, stable, and accurate. In fact, it is 
exact for polynomials up to order 11. It can never be exact in our case, though, even 
if the v and rr grids were made to coincide, because the gravitational acceleration, g, 
will be a rational polynomial if density is a simple polynomial. It is, however, 
accurate enough for our purposes. 
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Performing the integrals in Eq. (17) yields the corresponding matrix equation 

(~ZA-{Bo+LB,+L2B2+IB,+ln(w)[GB,+~6B,+~26B2]}).b=O (18) 

where the A, the Bj and the 6B, matrices are independent of 1 and o and so need be 
computed only once per model. The eigenvalue w* is clearly just eigenfrequency 
squared. The eigenvector b will contain all of the coefficients needed to specify the 
linear combinations of basis functions representing each scalar component of the 
computed eigenfunction. 

Choosing one angular order and, for the moment, neglecting the frequency depen- 
dence of the model, we may rewrite Eq. (18) as 

[co2A-B] .b=O. (19) 

Equation (19) is not quite in final form because the boundary conditions have not yet 
been matched. They can be matched directly in matrix A by forming the appropriate 
linear combination of rows and columns, eliminating rows and columns which are no 
longer needed, to form transformed matrix A. Likewise B is transformed into B 
yielding 

C(o). b= [co*&&. b=O. (20) 

Since A is not diagonal, this is a generalized eigenvalue problem. However, because 
of our choice of basis functions both matrices are sparse and, in fact, can be 
rearranged to be block diagonal. Each block will be of dimension 2J X 45, where J is 
the number of scalars (coupled second-order ordinary differential equations) involved. 
As there are N blocks, the problem has dimension 2JN x 2JN. 

Following Martin and Wilkinson [ 131, C(w) may be triangularized, in order NJ3 
operations, for each trial w, preserving both its sparseness and its Sturm count 
(number of eigenvalues larger than the trial value). Following Peters and Wilkinson 
[ 151, the Sturm count and determinant of C may be used to locate an eigenvalue to 
machine precision by a combination of bisection and linear interpolation. The perfor- 
mance of this algorithm depends critically on the matrix decomposition. We can 
improve the performance of the decomposition by about 30% by reducing the 
bandwidth of C prior to triangularization using an algorithm due to Schwarz [ 16). 
Given an eigenvalue, the corresponding eigenfunction is found by inverse iteration 
(Wilkinson [ 191) using the final matrix decomposition needed in the bisection. 

Because matrix C is constructed and decomposed for each trial eigenfrequency, 
there is no difficulty incorporating a small frequency dependence into the B matrix. 
Note that in the frequency-independent case it is necessary to match boundary 
conditions in matrix B only once per angular order. In the frequency-dependent case 
the boundary conditions must be matched once per trial eigenfrequency. The 
additional work required has a negligible impact on performance because matching 
the boundary conditions is insignificant compared with decomposing matrix C. 
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It is interesting to note that the frequency-dependent problem (Eq. 18)) is a 
peculiar eigenvalue problem. Because of the frequency dependence, a different eigen- 
value problem is, in effect, being examined at each trial eigenfrequency. This 
peculiarity leads to no complications in practice because the frequency dependence of 
B is very slight. However, it does have the result that our final eigenvectors will not 
be orthogonal. 

NUMERICAL PERFORMANCE 

Following a finite element rule-of-thumb (G. Frazier, personal communication, 
1975), we require at least six points of grid 7c per radial wavelength (Z = 6). Although 
we desire higher accuracy than is typical of finite element calculations, our choice 
turns out to be conservative. This is because finite element programs usually use 
piecewise linear basis functions providing O(h’) accuracy in eigenfrequency where 

h = llhjll* (21) 

ZZ-splines, however, can be shown to provide O(h6) accuracy in the eigenfrequency 
and O(h3) in the eigenfunction (Birkhoff et al. [3]). 

Numerical experiments indicate that the algorithm of Peters and Wilkinson [ 151 
routinely finds eigenvalues to about one part in 10” (for a machine truncation of 
about one part in 10i4). However, the numerical eigenfrequency will always be an 
upper bound to the actual eigenfrequency (e.g., Birkhoff et al. [3]). Therefore, 
absolute accuracy must be determined by other means. In order to assess the absolute 
accuracy of computed eigenfrequencies, we compared the results of the Rayleigh-Ritz 
algorithm with those of a shooting method due to Gilbert. The shooting program is 
capable of an absolute accuracy in the eigenfrequency of about one part in IO’ 
(limited by the precision to which Runge-Kutta coefticients are specified). Even for 
eigenfrequencies in the vicinity off,,, , the two methods were always found to agree 
to at least seven significant figures. 

Experience in computing free oscillations of the Earth shows that the size of the rr 
grid will be 

Nz 1.U. f,,, (22) 

for spheroidal modes and 

NTZ 0.71-f,,, (23) 

for mantle toroidal modes, where f,,, is in millihertz. If one wishes to compute all 
elastic-gravitational spheroidal and mantle toroidal modes with eigenfrequency less 
than A,,, , there are about 12f ,&, modes to determine. Of these roughly two-thirds 
will be spheroidal and one-third toroidal. The performance of our Rayleigh-Ritz 
algorithm is determined by the matrix decomposition needed to find the determinant 
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TABLE II 

Computational Effort 

Type of calculation J Relative effort, E 

Mantle toroidal 1 0.07 
Spheriodal (neglecting P) 2 1.9 
Spheriodal (including P) 3 6.3 

and Sturm count of C(o) at each trial w. Roughly, a constant 12 matrix decom- 
positions are required per computed normal mode. Combining the results of this 
section, we may determine the relative effort required to compute suites of normal 
modes under various assumptions. These results are shown in Table II. Relative 
effort, E, is normalized so that 

T=E+j-;,, (24) 

will be approximate CPU time in seconds on a VAX 1 l/780 minicomputer. 
Without any other economies, if we choose I to be 6 and f,,,, to be 25 mHz, our 

worst case calculation will require about 170 hours CPU on the VAX minicomputer. 
While this is a lot of computer time, it is by no means out of reach considering it 
need be done only once per model for a small number of models. Of course, other 
economies are possible. However, since the most correct calculation is practical, we 
do not consider them to be viable for eigenfrequencies less than 25 mHz unless they 
entail no loss of accuracy. As normal mode calculations are extended beyond 
25 mHz these arguments are no longer valid. Not only does the cost of the 
calculations increase as f&, , but the number of models of interest increases 
dramatically as lateral structural variations become important. Fortunately, precision 
is less critical in this regime since observations are less accurate than in the normal 
mode band. If one is willing to sacrifice some accuracy, there are methods of 
improving the performance of our algorithm by at least an order of magnitude. 

NUMERICAL DIFFICULTIES 

The most pervasive problem with our algorithm is the occurrence of what Wiggins 
[18] calls “extraneous” roots. That is, eigenfrequencies occur throughout the 
eigenspectrum of matrix C (but most commonly at the lower frequencies) which do 
not correspond to any known elastic-gravitational normal mode. These “extraneous” 
modes have eigenfunctions whose energy is concentrated almost exclusively in the 
fluid outer core, leading Wiggens [ 181 to conclude that they arose because the radial 
derivative of the tangential displacement scalar V is poorly constrained in fluid 
regions. However, it is easy to show that this is not the cause of the problem. We 
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have done so by constraining V with a zero curl (so called Adams-Williamson) 
condition in the outer core. 

The problem is actually mathematical. rather than numerical. As discussed above, 
there are an infinite number of undertones with nearly zero eigenfrequency 
corresponding to flow in the Earth’s fluid regions. While Eq. (6) incorporates approx- 
imations which are not valid for the undertones, it still has solutions which 
correspond to them. We can demonstrate that the “extraneous” modes are these 
solutions by locating an identifiable suite of them. In order to minimize computation, 
we have done this by constructing an Earth model with a stable outer core 
(Brunt-Vaisiila period of 6 hr). In this way, we were able to easily locate the first 10 
(least oscillatory) undertones of angular order three. The least oscillatory of these is 
shown in Fig. 12. 

The “extraneous” modes appear throughout the eigenspectrum because of the 
upper bound property of the Rayleigh-Ritz eigenfrequencies. Even in our finite 
dimensional basis space, there are a very large number of undertones. They very 
quickly become so oscillatory that no linear combination of basis functions can 
adequately represent them. As a result, their eigenfrequency estimates can become so 
poor that they may appear anywhere in the eigenspectrum. Although we have iden- 
tified the source of the “extraneous” modes, we have found no means of factoring 
them out of the problem. Rather we have had to be content with indentifying and 
discarding them after the fact. This turns out to be quite simple to do using the 
fraction of kinetic energy in fluid regions as a discriminant. 

The problem that Wiggins [ 181 was concerned about can occur also, though not in 
our experience in the outer core. However, it does lead to ill-conditioning in the ocean 
layer which can become severe enough to cause the matrix decomposition algorithm 
of Martin and Wilkinson [ 131 to fail. We eliminate this problem by applying a zero 
curl constraint in the model ocean. Although this condition is strictly correct only if 
the ocean is neutrally stratified (zero Brunt-Vaislla frequency), the ocean layer is 

Amplitude 

FIG. 12. Eigenfunction displacement for the least oscillatory spheroidal undertone of angular order 
three (- ,SJ. 



112 BULAND AND GILBERT 

sufficiently unimportant at normal mode frequencies that it makes no practical dif- 
ference. 

A related problem can occur in the Earth’s outer core. Because the compressional 
velocity in the outer core is higher than the shear velocity anywhere in the Earth, our 
algorithm for constructing grid x can result in very sparse sampling of the outer core 
if the total number of grid points, N, is small. When the evenescent portion of a very 
low frequency mode penetrates the sparsely sampled outer core, the weak constraint 
on V allows large numerical ocillations in the eigenfunction. This problem does not 
occur for any mode if N is sufficiently large. For production work where f,,, is of 
order 20 mHz this problem never arises. It can be avoided in experiments with low 
f,,, by raising Z in the outer core. 

A final difficulty is mentioned more as a curiosity than a problem to be avoided. 
Comparing Figs. 7 and 12 it is clear that Stoneley modes and undertones may 
overlap spatially. As we have shown above, they also may have similar eigenfre- 
quencies, at least numerically. Therefore, it is theoretically possible to have quasi- 
degenerate coupling between them. This has occurred once in our experience out of 
7000 spheroidal modes calculated. The coupling results in two modes with nearly the 
same eigenfrequency, each having the character of both a Stoneley mode and an 
undertone. The cure for this problem is as simple as the problem is rare. Altering 
almost any aspect of the calculation should eliminate the coupling. Adding an extra 
grid point almost anywhere works quite nicely. 

ECONOMIES 

Several obvious economies readily present themselves. It is possible that the 
number of basis functions per radial wavelength, Z, may be lowered with acceptable 
losses in accuracy (decreasing the size of the matrices). Likewise, it is possible to 
alter the tolerance to which eigenvalues are located as they are upper bounds of the 
true solution anyway (decreasing the number of matrix decompositions). We have 
chosen, instead, to pursue enhancements in performance which entail no loss in the 
accuracy of the result. 

A time honored method of reducing the cost of computing spheroidal normal 
modes is to neglect the perturbation to the gravitational potential, P. The potential 
perturbation is really significant only at the very lowest frequencies. The economy 
gained can be substantial as shown by Table II. We have found two different methods 
of retaining the exact potential perturbation at little more than the cost of neglecting 
it. 

The fastest method (and the one with which we have production experience) is 
useful only for frequency-independent Earth models. We begin by computing all 
spheroidal modes with eigenfrequency less than f,,, for one angular order. Given 
displacement scalers U and V, there is an analytical expression for constructing the 
corresponding P (Pekeris and Jarosch [ 141). The resulting eigenfunctions are now 
used as basis functions for a new Rayleigh-Ritz calculation. This time the matrices 
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are not sparse. However, they are always of dimension less than about 3f,,,. 
Surprisingly, all solutions of the new Rayleigh-Ritz problem are useful if $,,, is 
sufficiently large. This is because the effect of P is quite small for eigenfrequencies 
larger than several millihertz. Although the gravest eigenfrequency may shift substan- 
tially, it still retains an accuracy of one part in 10’ if f,,, is large enough. This 
method fails for frequency-dependent models as it presumes that the desired eigen- 
functions are orthogonal. 

A more general method, applicable to frequency-dependent models, is suggested by 
the complete independence of the algorithms for determining eigenvalues and eigen- 
vectors. As before, we begin by computing spheroidal modes neglecting P. Then, we 
reconstruct the H-spline Rayleigh-Ritz matrices including the potential perturbation 
terms. If the previously computed eigenfunction and eigenfrequency are sufficiently 
good, they may be relined to the complete solution by successive Rayleigh quotients 
and inverse iterations. In most cases, we expect that one matrix decomposition will 
suffice for the successful refinement. This method will probably fail for the very 
lowest frequency modes. In these cases the modes can be computed directly, 
including P,Even so, substantial savings should result overall from this technique. 

A commonly used method of reducing the cost of finite element calculations in 
general is the lumped mass approximation. That is, the kinetic energy matrix is 
artificially diagonalized by assuming that mass is concentrated at points of the 7~ grid. 
Elastic restoring forces and hence the potential energy matrix are left unchanged. The 
lumped mass approximation makes it possible to reduce our eigenvalue problem to 
standard form without enlarging the bandwidth. For a frequency-independent model, 
the calculation would require one matrix decomposition per angular order rather than 
12 per normal mode. 

The lumped mass approximation has a surprisingly small effect on dispersion 
(eigenfrequencies) because total mass is conserved and because the kinetic energy 
matrix is diagonally dominant anyway. In cases where a large number of modes is 
needed and extreme accuracy is not required, the approximate modes may be a 
satisfactory end product. If so, the effects of the approximation may be minimized by 
greatly expanding the a grid. Because the matrix need be decomposed only once per 
angular order, its size is no longer of primary importance. Second, the dispersion due 
to a frequency dependence in the model could be incorporated very satisfactorily in 
many cases by means of first-order perturbation theory. 

In calculations where the lumped mass approximation is not accurate enough, it 
may be possible to parallel the scheme described above. That is, the approximate 
modes may be useful as starting solutions for a combination of Rayleigh quotients 
and inverse iterations converging to the most correct possible solution. 

SUMMARY 

We have used a Rayleigh-Ritz formulation with piecewise cubic Hermite spline 
basis functions to compute elastic-gravitational free oscillations of the Earth. Special 
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cases and nearly degenerate eigenfrequencies are property treated by posing the 
problem as a generalized algebraic eigenvalue calculation leading to a high degree of 
automation. The algorithm can be made reasonably efficient by utilizing the 
sparseness of the matrices. Although one must be cautious of stability problems in 
the fluid regions of an Earth model, no insurmountable problems arise. Significant 
economies are possible without loss in the completeness or accuracy of the solution 
by taking advantage of the independence of the eigenvalue and eigenvector com- 
putations. 
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